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The generalized extinction factors for a set of strong re¯ections as a function of

wavelength are obtained by indirect measurements. The experiments are

performed on a crystalline system that satis®es the geometrical requirements

imposed by theoretical models developed for a ®nite perfect crystal. With

increased perfection, represented by a reduction in the width of the mosaic

distribution function from three to one thousandth of a degree, the experiments

give results that approach the predictions from the theory. The present

procedure utilizes measurements of the integrated diffracted power of a weak

re¯ection for scaling the strong re¯ections, hence non-measurable wavelength-

dependent factors are assumed to be eliminated.

1. Introduction

One inherent dif®culty in accurate structure determination

studies is to obtain reliable estimates of the extinction effects.

That is the reduction of intensity owing to either coherently or

incoherently multiply scattered waves (primary and secondary

extinction, respectively). A priori determination of such

effects is rarely carried out. The standard procedure is to

calculate extinction parameters from the least-squares struc-

ture-re®nement procedure (Zachariasen, 1967; Becker &

Coppens, 1974a,b, 1975).

As shown in previous theoretical works (Thorkildsen &

Larsen, 1998a,b,c, 1999a), the generalized extinction factor,

that is the combined in¯uence of primary extinction and

ordinary absorption, strongly depends upon the crystal shape

and the scattering geometry. The basis for the analysis has

been the Takagi±Taupin equations (Takagi, 1962, 1969;

Taupin, 1964), which are formulated in the case of a ®nite

perfect crystal and solved with appropriate boundary condi-

tions.

The perfect crystal gives rise to extreme multiple-scattering

effects, i.e. it represents the case of minimum value for the

generalized extinction factor. Thus, if we want to assess the

in¯uence of crystal imperfections on the scattering processes,

it is important to have reliable estimates of this perfect-crystal

limit.

In this work, we demonstrate the calculation and

measurement of the generalized extinction factor for nearly

perfect bipyramidal crystals at different wavelengths. For

proper comparison, the theoretical basis is extended to cover

all actual scattering situations. The theoretical development is

given in x2. This also includes the calculation of rocking

curves. The experimentally generalized extinction factors

cannot be reliably deduced unless careful measurements of

rocking curves are performed, in our case by appropriate !
scans. The experiments are presented in x3, while the method

of analysis, the results and discussion are covered in xx4±5. The

®nal conclusions are given in x6. Some mathematical details

are postponed to Appendices.

The wavelength dependence of extinction has been

frequently studied in the past three decades, mainly aiming at

testing different theories used in the re®nements (Niimura et

al., 1975; Cooper & Rouse, 1976; Cooper, 1979; Palmer &

Jauch, 1995) or extracting `extinction-free' structure factors by

extrapolation to zero wavelength (Mathieson, 1977, 1979;

Hester & Okamura, 1996; Graafsma et al., 1998; Lippmann &

Schneider, 2000). A different approach was applied by

Stevenson & Barnea (1983) who considered extinction-related

differences in the Bijvoet ratios of zinc selenide (ZnSe).

Suortti (1982a,b) also devised a method for experimental

correction for primary and secondary extinction. The appli-

cation of 
 diffractometry to the problem has been discussed

by Schneider (1977).

2. Theory

In TL98c (Thorkildsen & Larsen, 1998c), TL99a (Thorkildsen

& Larsen, 1999a) and TL99b (Thorkildsen & Larsen, 1999b),

the procedures for calculating generalized extinction factors,

ordinary absorption factors and rocking curves were outlined

for perfect crystals having a rectangular t � l cross section.

The results were all derived from the Takagi±Taupin equations

using the point-source concept and the Riemann±Green

method.
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Those works were however limited to the AB±AD scat-

tering con®guration, cf. Fig. 1(a), having1 0 � �oh � ��=4� and

ÿ�oh � 
 � �oh. Another scattering con®guration, AB±CD

scattering, cf. Fig. 1(b), is realised when 0 � �oh � ��=4� and

�oh � 
 � ��=2� ÿ �oh. �oh is the Bragg angle and 
 is the angle

between the inward drawn normal to the surface B and the

trace of the re¯ecting lattice planes. These two cases together

cover all possible (with appropriate interchange of t and l)

low-angle scattering situations. The latter case, AB±CD scat-

tering, is even easier to handle than the former, since only a

single region m is formed within the crystal by the ray-tracing

procedure shown in Figs. 3 and 4 of TL98c. This situation may

be classi®ed as a case of `pure' Laue scattering and the

extended volume emerging from the surface integration set-up

equals the true volume of the crystal, cf. Becker & Dunstetter

(1984).

The generalized extinction factor, y, for the AB±CD scat-

tering geometry may be expressed by

y � N y

P
j�C;D

P
i�A;B

R
Miÿj���

dy
R

Siÿj�y;��
dx

� G
iÿj
h �ujx; y�Aiÿj

h ��0jx; y��� ��2; �1�
while the corresponding expression for the intrinsic power, cf.

equation (10) of TL99b, becomes

P
�0�
h ���oh� � N p

P
j�C;D

R
Mj���

dy

���� P
i�A;B

R
Siÿj�y;��

dx G
iÿj
h �uj x; y�

�Q
iÿj
h ��0;��oh;��

0
ohjx; y�Aiÿj

h ��0jx; y�
����2: �2�

The coupled surface integrations are expressed in dimen-

sionless variables x and y, spanning the entrance and exit

surfaces, respectively. The explicit expressions for the Green

functions, G
iÿj
h , the phase factors, Q

iÿj
h , and the factors A

iÿj
h

related to ordinary absorption, as well as the parameters �, u,

�0, ��0
oh and �0 are given in Appendix A. � and �0 are purely

geometrical quantities. u is inversely proportional to the

square of the extinction length and is thus a measure of the

scattering power. �0 is proportional to the linear absorption

coef®cient. All these parameters appear in the formalism as

dimensionless numbers. ��0
oh determines the deviation from

the kinematical Bragg angle caused by refraction due to the

average polarizability of the crystal.

The actual integration set-up, fRMiÿj���,
R

Siÿj�y;��g, is summar-

ized in Appendix B. In this work, the intrinsic power is

normalized to give the generalized extinction factor when

integrated across the deviation from the Bragg condition,

��oh,

y � R�1
ÿ1

P
�0�
h ���oh� d��oh: �3�

The normalizing constants N y and N p are given by

N y � 1=2�; N p � �0=4�:

The formulas may be extended to cover crystals having cross

sections that vary along the direction perpendicular to the

plane of diffraction: t � l! t�z� � l�z�, cf. Fig. 2. By intro-

duction of the dimensionless coordinate w by z � wh, where h

is the height of the crystal above its base plane, the parameters

of the calculation are rescaled according to

u! u�w� � u�0��1ÿ ws�2
�0 ! �0�w� � �0�0� �1ÿ ws�
�0 ! �0�w� � �0�0� �1ÿ ws�
�! ��w� � ��0� �1ÿ wr�=�1ÿ ws�;

with s � �l�0� ÿ l�h��=l�0� and r � �t�0� ÿ t�h��=t�0�. The

expressions for the generalized extinction factor and the

intrinsic power then become

Figure 1
The actual scattering situations: (a) ABÿ AD scattering and (b)
ABÿ CD scattering. In both cases, the crystal surfaces A and B
constitute the entrance surface, i.e. the direction of the unit vector so,
parallel to the wavevector of the incident beam, is con®ned to the sector
marked by the red square. The surfaces (a) A and D or (b) C and D
constitute the exit surface in the two cases. Thus the direction of the unit
vector sh, parallel to the wavevector of the diffracted beam, is con®ned to
the sector marked by a blue square.

Figure 2
Basic crystal shape, described by the symmetry class mm2, used for the
theoretical development.

1 This scattering scheme is also realised for ��=4� � �oh � ��=2� and
�oh ÿ ��=2� � 
 � ��=2� ÿ �oh.
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with

N y � 1
3 �6� 2rsÿ 3�r� s����0�

N p � 1
2 �0�0�N y:

The crystals used in the present experiments were shaped as

symmetric bipyramids, cf. Fig. 3(a). This particular case,

corresponding to r � 1, is readily handled by the formulas

outlined above.

3. Experimental

In order to experimentally assess the theory, a suitable crystal

had to be found. A specimen with a well de®ned (naturally

developed) crystal shape and a rectangular cross section was

required. In addition, it should be perfect (or nearly perfect)

and also low absorbing so that dynamical features could be

studied. Finally, it should endure signi®cant exposure to a

synchrotron beam. Crystals of squaric acid [3,4-dihydroxy-3-

cyclobutene-1,2-dione, H2C4O4], space group P21=m, ful®l

these requirements very well. Specimens of various sizes were

obtained by slow evaporation from aqueous solution at

slightly elevated temperatures (Semmingsen, 1973). The

deuterated samples were prepared by

repeated recrystallization from 99:5%
D2O. Two separate sessions of beam-

time were granted at the Swiss±

Norwegian beamline (SNBL) at the

ESRF ± the ®rst dedicated to the

hydrogen (Hÿ Sq) version, the

second to the deuterated (Dÿ Sq)

version.

A schematic representation of a

squaric acid crystal is shown in Figs.

3(a) and 3(b). Both the investigated

crystals are modeled having a

morphology represented by the

symmetry class mmm. Indices of

limiting planes and the length

parameters adequate for describing

the crystals are indicated in the ®gure.

The dimensions of the specimens used

in the experiments are given in Table 1. The crystals should be

rotated an angle  �  0
h about the reciprocal-lattice vectors

fhg with respect to the initial orientation for scattering in the

vertical plane as calculated from the orientation matrices. The

base plane of the bipyramidal crystal then coincides with the

plane of diffraction spanned by Ko and Kh, the wave vectors of

the incoming and diffracted beams, cf. Fig. 3(b).

The crystals were mounted approximately along b� on a

short glass capillary. The measurements were conducted using

the KM6-CH six-circle � diffractometer2 at SNBL. The theo-

retical resolution in the diffractometer angles is 0:0002� except

in ', where �'instrument � 0:0004�. The geometry of this goni-

ometer and the procedure for angle calculations have

previously been described (Thorkildsen et al., 1999). The

samples were located about 15 m from the double-crystal Si

(111) monochromator. The general layout of the experimental

set-up is shown in Fig. 4. The unfocused beam cross section at

the sample position was approximately 0:5� 0:5 mm. The

beam divergences, including the contribution from the

monochromator, are about 25 mrad both horizontally and

vertically at � � 1:0 AÊ . The energy resolution of the mono-

chromatic beam is ��=� � 1:4� 10ÿ4.

The perfection of the crystals was judged based on ! scans

for different re¯ections. Examples for the 303 re¯ection at

� � 0:6 ^ 1:2 AÊ are shown in Fig. 5 for both the Hÿ Sq and

Dÿ Sq crystals. In general, the rocking curves are seen to be

narrow and homogeneous with FWHMDÿSq<FWHMHÿSq.

For the Hÿ Sq crystal, an orientation matrix was obtained

from centering of a total of 60 re¯ections, 20 re¯ections

within 14:3< 2�oh < 80:8� and 40 re¯ections within

93:0< 2�oh < 136:3�, in the scintillation detector (Cyberstar

YAP) aperture.3 For the Dÿ Sq crystal, the orientation

matrix was formed using 68 re¯ections within

69:4< 2�oh < 128:5�. The resulting lattice parameters from a

triclinic re®nement are given in Table 2.
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Table 1
Actual crystal dimensions.

jnj is the distance from the center of the crystal to its outer faces. Crystal volumes are 0:00146 �9�mm3

(Hÿ Sq) and 0:00127 �8�mm3 (Dÿ Sq).

l�0� (mm) l�h� (mm) t�0� (mm) 2h (mm) jnf011gj (mm) jnf110gj (mm)

Hÿ Sq 200 (5) 50 (5) 150 (5) 130 (5) 49 (3) 65 (3)
Dÿ Sq 180 (5) 30 (5) 150 (5) 130 (5) 49 (3) 59 (3)

Table 2
Triclinic re®nement of the unit cells.

a (AÊ ) b (AÊ ) c (AÊ ) � (�) � (�) 
 (�)

Hÿ Sq 6.1324 (4) 5.2737 (10) 6.1427 (7) 89.992 (13) 89.952 (7) 89.999 (11)
Dÿ Sq 6.1480 (3) 5.2700 (7) 6.1626 (4) 89.991 (8) 89.932 (4) 90.007 (7)

2 KM6-CH is a trademark of KUMA Diffraction Ltd, Wroclaw, Poland.
3 The horizontal and vertical aperture acceptances are both 0:6�.
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The linearity of the counting chain was tested using a

radioactive source and the detector was found to be linear up

to � 2� 105 counts sÿ1 (Pattison, 1999). Any variation with

energy was considered negligible for the actual wavelength

range. The energy window of the detector was optimized to

avoid higher harmonic contributions from the mono-

chromator.

For both the Hÿ Sq and the Dÿ Sq crystal, four repeated

! scans for three strong re¯ections, 103, 303 and 400, and a

weak reference re¯ection, 20�3, were recorded at room

temperature at seven different wavelengths (0.6±1.2 AÊ ) in

regular intervals of 0.1 AÊ . For a strong re¯ection, multiple-

scattering effects are pronounced and a dynamical theory is

called upon for the calculation of the integrated power. A

weak re¯ection is `extinction free', i.e. the associated inte-

grated power is given by kinematical theory.

Table 3 contains calculated values of the actual structure

factors for � � 1:0 AÊ . They are obtained from the positional

and thermal parameters given in Table 2 of Semmingsen

(1973) and Table 1 of Semmingsen (1975) for the Hÿ Sq and

the Dÿ Sq versions, respectively. The atomic form factors are

taken from Waasmaier & Kirfel (1995) with anomalous-scat-

tering corrections based on the program FPRIME (Cromer &

Liberman, 1970; Cromer, 1995). The variation of the structure

factors with wavelength for the range � 2 �0:6; 1:2� AÊ , owing

to anomalous scattering, is approximately 0.6% for the strong

re¯ections and 0.2% for the weak 20�3 re¯ection. Possible

errors in the calculated structure factors are neglected in this

work.

The re¯ection 400 gives rise to AB±AD scattering, the other

ones to AB±CD scattering. Every re¯ection was initially

centered and the scans were performed using 400 steps of

2:5� 10ÿ4� over the pro®le using a counting time of

0.5 s stepÿ1 ± ensuring adequate resolution and determination

of the background level. In order not to saturate the detector,4

different absorbers (Cu and Al foils) were used. Their

attenuation factors were experimentally determined for each

wavelength and each ®lter in question. The polarization

coupling was checked throughout the entire wavelength

interval by measuring high-angle re¯ections in both the hori-

zontal and vertical planes.5 Each re¯ection (and background

range) was also assessed with regard to neighboring lattice

nodes initiating multiple-beam diffraction.

During the experimental sessions, no crystal decay as a

function of time was observed.

4. Analysis

The experimental determination of a generalized extinction

factor is an indirect measurement that heavily relies on the

idea of using a weak re¯ection to rescale the measured inte-

grated powers of the strong re¯ections. Hence, wavelength-

dependent terms that are not part of the physics of the scat-

tering processes, but only related to the measuring apparatus

and the state of the incoming X-ray beam, are eliminated.

The measured re¯ection pro®les were integrated numeri-

cally using the ListIntegrate function (WolframResearch,

1999) of Mathematica (Wolfram, 1999). The end points of the

integration, represented by step numbers n � nL _ nR, were

determined by individual inspection of plots of the mean

power,

Ph�n� �def �1=n�Pn
i�1

Ph�i�;

Figure 3
Actual crystal. (a) Indices of limiting planes. (b) Crystal orientation with
�303� in scattering position. e1 points towards the incoming beam, �e1; e2�
constitutes the reference vertical plane of the diffractometer, cf. Fig. 1 of
Thorkildsen et al. (1999).

Table 3
The structure factors for the re¯ections used for experimental
determination of generalized extinction factors.

Values calculated for � � 1:0 AÊ . jF000j is included for completeness.

jF000j jF103j jF303j jF400j jF20�3j
Hÿ Sq 116.2 22.81 28.41 27.51 0.7726
Dÿ Sq 116.2 23.02 28.13 26.93 0.7384

4 The maximum measured intensity was always kept below
1:5� 105 counts sÿ1 ± i.e. within the range of linear response of the detector.
5 Accessible re¯ections in the horizontal plane are limited to 2�horizontal < 45�

owing to mechanical constraints of the instrument.



where i counts the steps from the respective ends of the scan

interval. nL �nR� was then associated with the beginning of the

smooth positive slope of this function and the background

calculated from Ph�nL� and Ph�nR�. This was performed for

each repetition of a scan and the average with its standard

deviation was assigned to Ph, the net integrated diffracted

power.

To obtain an estimate of the mosaic spread and possible

crystal strains, the square of the FWHM of the rocking curves

was plotted against tan2 �oh according to the procedure

outlined by HoÈ che et al. (1986) and Coppens (1992):

FWHM2 � A2 � B2 tan2 �oh: �6�

The parameter A is attributed to beam divergence and mosaic

spread. B is mainly related to the relative wavelength spread,

��=�, with additional contributions from the width of the

intrinsic dynamical rocking curve and the variation in the

lattice spacing owing to internal strains.

To determine values of the horizontal polarization fraction,

fh, we use the expression (Coppens, 1992)

fh �
�Pv=Ph� ÿ cos2 2�oh

�1� �Pv=Ph���1ÿ cos2 2�oh�
: �7�

Pv and Ph are integrated powers resulting from measurements

of a weak re¯ection with the plane of diffraction aligned

vertically and horizontally, respectively. The integrated powers

are multiplied by the actual crystal transmission factors to

correct for absorption owing to differences in the absolute

crystal orientation in the two cases. To ensure maximum

sensitivity, different re¯ections, cf. Table 4, were used for each

wavelength by measuring as close as possible to the instru-

mental limit in the horizontal plane.

The theoretical expression for the integrated power for a

strong re¯ection, h1, is
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Figure 4
Schematic view of the experimental set-up.

Figure 5
Measured rocking curves for the 303 re¯ection. (a) and (b) Dÿ Sq at � � 0:6 and 1.2 AÊ , respectively. (c) and (d) Measurements for Hÿ Sq at the same
wavelengths. (a) FWHM � 2:7� 10ÿ3�, (b) 4:4� 10ÿ3�, (c) 4:4� 10ÿ3�, (d) 6:0� 10ÿ3�. Uncertainty: �0:1� 10ÿ3�.
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Ph1
� I0���

A�f ���
J��� r

2
ev

V2
c

jFh1
j2�3

sin 2�h1

�1� �h1
�y: �8�

A�f is the transmission factor of the attenuator foil. Thus, I0=A�f
is the intensity function of the incoming beam at the crystal.

J is a scale function representing the performance of the

detector. We assume that this function is independent of the

intensity of the diffracted beam. �1� �h1
� is the correction

factor for thermal diffuse scattering. It is calculated for the

actual diffractometer geometry using a modi®ed version of

the procedure given by Stevens (1974). y is the generalized

extinction factor that represents two-beam multiple-scattering

effects along all possible optical routes in the crystal. For the

strong re¯ections, polarization effects are also merged into y.

The other terms in (8) have their usual interpretation: re is the

classical electron radius, v the volume of the crystal, Vc the

unit-cell volume, jFh1
j the modulus of the structure factor and

�h1
the actual Bragg angle.6

For a weak re¯ection, h2, the corresponding expression

becomes

Ph2
� I0���J���

r2
ev

V2
c

jFh2
j2�3

sin 2�h2

ph2
�1� �h2

�Ah2
: �9�

This re¯ection is measured without use of any attenuator.

According to our basic assumption, J��� is the same as for the

strong re¯ections. ph2
is the polarization factor given by

ph2
� fh � �1ÿ fh� cos2 2�h2

; �10�

while Ah2
is the absorption factor associated with single scat-

tering events, i.e.

Ah2
� �1=v� R

v

dv exp�ÿ��so � sh��; �11�

so � sh being the beam path measured along the incident and

diffracted beams connecting the volume element dv to the

entrance and exit surfaces. � is the linear absorption coef®-

cient. The absorption factors were calculated using the

analytical approach by de Meulenaer & Tompa (1965).

For cases where TDS corrections are negligible, we obtain

the following expression for the experimental generalized

extinction factor:

y � yexp �
Ph1

A�f
Ph2

sin 2�h1

sin 2�h2

ph2
Ah2

jFh2
j2

jFh1
j2 : �12�

The corresponding theoretical generalized extinction factor is

calculated following equation (46) of Becker & Coppens

(1974a):

y � yth � fhy? � �1ÿ fh�yk cos2 2�h1
; �13�

where y? and yk are calculated from (4) with

C � 1 _ j cos 2�h1
j in the expression for the coupling factor u,

cf. equation (29).

5. Results and discussion

The ®nal rocking curves are represented by the average of

four individual scans. The peak positions for each scan were

internally consistent, indicating a good stability of the instru-

ment. In order to assess the crystal quality, the measured

Figure 6
Theoretical rocking curves for the 303 re¯ection in Dÿ Sq. (a) � � 0:6 AÊ

and (b) � � 1:2 AÊ . (a) FWHM � 2:1� 10ÿ4�, (b) 2:6� 10ÿ4�. The
apparent tail in (b) is caused by refraction effects. There are different
shifts in ��oh with respect to zero in the contributions to the rocking
curve from the various scattering processes. These shifts are, according to
equations (24)±(27), ���0

oh=2��1ÿ ��=�ÿ� and ���0
oh=2��1ÿ ��=�ÿ�,

respectively. For case (a), we have 0:46� 10ÿ4� and ÿ0:71� 10ÿ4� and,
for case (b), 1:8� 10ÿ4� and ÿ4:7� 10ÿ4�. Thus with increasing
wavelength these shifts are being resolved in the rocking curve.

Figure 7
FWHM2 as function of tan2 �oh. Red line (points) represents Hÿ Sq.
Blue line (points) represents Dÿ Sq.

6 �h1
represents a strong re¯ection and �h2

the weak re¯ection. These symbols
replace �oh whenever appropriate.



rocking curves (Fig. 5) should be compared to those theore-

tically calculated for the same geometry (Fig. 6). These

represent the intrinsic dynamical contribution, and it is seen

that the FWHM's (�dyn) are about 2� 10ÿ4�. Owing to

refraction effects within the ®nite crystal, the intrinsic dy-

namical width, as a function of �, will not have a simple tan �oh

dependence. However, since �dyn � ��=�, this will not

preclude the use of (6). The main contributions to the widths

of the measured pro®les thus originate from instrumental

broadening, wavelength dispersion and crystal imperfection

(`mosaicity'), and are assigned from plots of FWHM2 vs

tan2 �oh. An example of such a plot for the Hÿ Sq and

Dÿ Sq 303 re¯ection is given in Fig. 7. The least-squares-

®tted lines shown in this ®gure give ��=� � 1:6 �1� � 10ÿ4 for

Dÿ Sq and 1:7 �1� � 10ÿ4 for Hÿ Sq. For the whole set

of measured re¯ections, we have ��=� 2 �1:6; 2:0� � 10ÿ4.

Compared with the expected result of 1:4� 10ÿ4 for this

beamline, this may indicate minor contributions from internal

strains. There is however no indication in the experiments of

excess strain in Hÿ Sq vs Dÿ Sq. Based on the measure-

ments of the 303 re¯ection, we obtain a FWHM of the mosaic

distribution function, �mos � 1:3 �7� � 10ÿ3� for Dÿ Sq and

�mos � 3:4 �3� � 10ÿ3� for Hÿ Sq. These values are repre-

sentative of the measurements of the 103 and 400 re¯ections

as well. Hence, we conclude that neither of the two crystals

used is perfect in the strict sense but the deuterated specimen

clearly exhibits a lower degree of `mosaicity'.

In order to scale the data, the weak re¯ection 20�3 was

chosen. ! rocking curves of this re¯ection for the two crystals

at � � 0:6 AÊ are depicted in Fig. 8.

The use of a weak re¯ection for scaling purposes demands

that three-beam Umweganregung scattering is not present.

Otherwise large perturbations of the diffracted two-beam

power may occur. This was carefully examined using the
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Figure 8
Measured rocking curves of the weak 20�3 re¯ection. (a) Dÿ Sq and (b)
Hÿ Sq. � � 0:6 AÊ . (a) FWHM � 2:2� 10ÿ3�, (b) 2:4� 10ÿ3�.

Figure 9
Polarization measurements. Determination of the horizontal polarization
fraction fh as a function of wavelength. Measurements for Hÿ Sq. The
horizontal line represents the average value used in the calculations.

Figure 10
Generalized extinction factors ± theoretical and experimental. (a)
Hÿ Sq and (b) Dÿ Sq. Blue line (points) represents re¯ection 103.
Black line (points) represents re¯ection 303. Red line (points) represents
re¯ection 400.
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procedure of Tanaka & Saito (1975) adapted to the actual

diffractometer geometry. Three-beam cases that might have

introduced systematic errors in the observed integrated

powers were not found. The same is true for the strong

re¯ections as well, where Aufhellung cases might have caused

a reduction of the integrated power with respect to the true

two-beam level.

The results from the absorption analysis of the weak

re¯ection are summarized in Table 5. At � � 1:0 AÊ , the

function A20�3� � for Dÿ Sq shows a smooth harmonic

variation within (0.957,0.973). Maximum absorption occurs

for  �  0
20�3

giving an orientation with the base plane of the

bipyramidal crystal parallel to the plane of diffraction. The

value of the absorption factor for this orientation is identical

to what we calculate from (4) by replacing the Green functions

with unity (i.e. for u � 0). Simulations indicate that uncer-

tainties in the dimensions of the crystals lead to errors in the

absorption factor A20�3 of less than 0:4%. It is to be noticed

that, in the measurements with

the Hÿ Sq crystal, there is a mis-

alignment in  of approximately

20� from the `ideal' scattering

situation as depicted in Fig. 3(b),

since the ®nal rotation  0
h about h

was not executed at this experi-

mental session. The absorption

factors given in Table 5 refer to the

actual angle settings.

Measurements of a set of

re¯ections in the horizontal and

vertical modes (Table 4) yielded

the horizontal polarization fraction

as a function of wavelength, cf.

Fig. 9. We used the average values,

0:97 �1� for Hÿ Sq and 0:94 �2� for

Dÿ Sq, as estimates for fh when

calculating the polarization factor

for the weak re¯ection. The results

of this calculation are included in

Table 5. The standard deviation

associated with fh causes an

uncertainty in p20�3 that increases

with wavelength. Maximum rela-

tive error amounts to 0:5 and 0:9%
for Hÿ Sq and Dÿ Sq, respec-

tively.

The correction factors for TDS

(one- and two-phonon scattering)

were calculated using the elastic

constants of squaric acid (Rehwald

& Vonlanthen, 1978; Semmingsen

et al., 1995). Since only low-angle

re¯ections were involved together

with a very narrow scan range in

! and small detector slits, the

corrections amounted to less than

0.1%, e.g. �400 � 3:3� 10ÿ4 to

�303 � 9:7� 10ÿ4 in Hÿ Sq for � � 1:0 AÊ . The variations for

the actual range of wavelengths were negligible.

Tables 6 and 7 sum up the experimentally obtained

diffracted powers. In fact, the largest contribution to the

quoted uncertainties originates from the estimated errors in

the transmission factors of the attenuator foils (A�f is in the

range 10±6600). Using (12), we were able to deduce the

generalized extinction factors as a function of wavelength for

the three strong re¯ections. The results are summarized in

Fig. 10 along with the theoretically calculated curves, cf.

equation (13). The relative errors in the experimentally

determined values for y are in the range 2±5%, while the

relative errors in theoretical values, owing to uncertainties in

crystal dimension and state of polarization, are less than 1%.

The precision of the measurements is good, except from two

outliers for Dÿ Sq at wavelengths of 0.7 and 0.8 AÊ . The

reason for this is a slight off-centering (in 2� and '� !,

respectively ± not realised at the time of measurements) of

Table 5
Absorption coef®cient, �, absorption factor, Ah2

, and polarization factor, ph2
, for the weak re¯ection

h2 � 20�3, as calculated for the actual wavelengths, �.

� (AÊ ) 0.6 0.7 0.8 0.9 1.0 1.1 1.2
� (cmÿ1) 0.7189 1.180 1.811 2.639 3.693 5.000 6.591

A20�3 Dÿ Sq 0.9915 (5) 0.9861 (8) 0.9787 (12) 0.969 (2) 0.957 (2) 0.942 (3) 0.925 (3)
Hÿ Sq 0.9913 (5) 0.9858 (8) 0.9783 (12) 0.968 (2) 0.956 (2) 0.941 (3) 0.924 (3)

p20�3 Dÿ Sq 0.993 (2) 0.990 (3) 0.988 (4) 0.985 (5) 0.981 (6) 0.978 (7) 0.974 (9)
Hÿ Sq 0.9964 (12) 0.995 (2) 0.994 (2) 0.992 (3) 0.991 (3) 0.989 (4) 0.987 (4)

Table 6
Observed integrated powers for deuterated squaric acid.

� (AÊ ) 0.6 0.7 0.8 0.9 1.0 1.1 1.2

P103A�f ��104� 0.99 (3) 1.41 (3) 1.37 (6) 3.01 (14) 5.7 (2) 12.7 (4) 28.5 (8)
P303A�f ��104� 1.06 (3) 1.20 (2) 2.06 (7) 3.13 (14) 5.9 (2) 13.8 (5) 30.3 (9)
P400A�f ��104� 1.07 (3) 1.45 (3) 1.97 (8) 3.18 (14) 6.0 (2) 14.6 (5) 31.2 (9)
P20�3 18.85 (10) 28.12 (12) 41.7 (3) 74.84 (11) 153.8 (3) 376.4 (10) 854 (2)

Table 7
Observed integrated powers for squaric acid.

� (AÊ ) 0.6 0.7 0.8 0.9 1.0 1.1 1.2

P103A�f ��104� 2.13 (6) 2.40 (6) 3.33 (10) 3.62 (9) 3.65 (11) 4.23 (14) 4.44 (13)
P303A�f ��104� 2.36 (9) 2.67 (7) 3.85 (12) 4.12 (10) 4.25 (13) 4.7 (2) 5.3 (2)
P400A�f ��104� 2.21 (6) 2.59 (6) 3.70 (12) 3.8 (2) 3.88 (12) 4.31 (15) 4.74 (14)
P20�3 33.1 (3) 35.6 (3) 51.7 (12) 59.0 (6) 66.5 (11) 74.4 (3) 83.9 (2)

Table 4
Data for assigning the state of polarization of the beam.

Measurements for Hÿ Sq. Different attenuator foils were used for different wavelengths.

� (AÊ ) 0.6 0.7 0.8 0.9 1.0 1.1 1.2

hkl �5�34� �4�42� �5�22� �2�33� �0�33� �0�14� �3�12�
Fhkl 6.23 4.33 5.71 5.92 2.59 1.17 1.66
Pv 195.2 (11) 133.5 (13) 451.3 (15) 542 (3) 80.0 (6) 86.6 (2) 276.6 (12)
Ph 117.9 (11) 74.3 (7) 236.7 (8) 309.0 (15) 42.1 (2) 45.8 (2) 149.8 (13)



these two re¯ections. Otherwise, the sets of three values for

yexp for Dÿ Sq exhibit less spread than the corresponding sets

for Hÿ Sq. The internal spread within a set for Dÿ Sq is

comparable to what is found for ycalc. For Hÿ Sq, the

experimental values have a ®xed order, y400 < y303 < y103,

contrary to the theoretical predictions. We ®nd no straight-

forward explanation of this feature apart from possible effects

owing to the misalignment in  .

The experimentally determined generalized extinction

factors are generally shifted towards higher values than

predicted from the theory. This must in part be due to the

mosaicity present in the crystals giving rise to incoherently

scattered waves and in part due to the instrumental resolution.

The degree of imperfection is seen to be larger in Hÿ Sq than

in Dÿ Sq.

Finally, Fig. 11 gives the theoretical generalized extinction

factors7 as calculated for the h1 � 400 re¯ection in Dÿ Sq
using the Becker±Coppens formalism (Becker & Coppens,

1974a). Fig. 11(a) represents the product yp � As��r; �h1
�ph1

,

where yp is the primary-extinction factor for a perfect sphere

(domain) of radius r, As is the ordinary absorption factor for

a sphere as calculated from Thorkildsen & Larsen (1998b) and

p is the polarization factor from (10). Fig. 11(b) represents

the product ys � As��R; �h1
�ph1

, where ys is the secondary-

extinction factor (type I crystal, Gaussian distribution) and R

is the radius of the spherical model crystal. For the simulations

shown in the ®gure, we have r � R � 67 mm, giving an iden-

tical value for the crystal volume, as quoted for the actual

bipyramidal crystal. The value �mos � 1:0� 10ÿ3� is chosen

for the mosaic spread. The relative error of Fig. 11(a)

compared to the simulation based on (4) is less than 20% for

the actual re¯ection. The results of the measurements are also

included in the ®gure. When ®tting these observations to a

combined expression, ypys � As��R; �h1
�ph1

, the best result is

obtained for negligible secondary extinction and with yp

calculated for r � 37 mm.

6. Concluding remarks

This work combines theory and experiments to address

questions related to generalized extinction in a ®nite crystal.

In this context, squaric acid seems to be a very good model

system for these kinds of studies. The use of a weak re¯ection

for scaling purposes has proved to be a successful method in

obtaining the generalized extinction factors.

The structure factors, cf. Table 3, were calculated using the

independent-atom model (Coppens, 1997). A crucial point is

whether this model gives accurate values for the re¯ections

used in the present measurements. Otherwise, large systematic

errors in the extracted values for the generalized extinction

factor may occur when applying equation (12). A recent work

(Noda, 2000) gives very good agreement between jFobs�h0l�j
and jFcalc�h0l�j for both Hÿ Sq and Dÿ Sq. However,

accurate charge-density studies based on synchrotron-radia-

tion data, for both crystal types, are called for before this issue

may be ®nally settled.

It is evident from the present experimental results that even

for nearly perfect crystals the theory should be extended to

include effects owing to imperfections. This could be pursued

by generalizing the Takagi±Taupin equations in the following

two ways: Either by modeling the exact displacement ®eld

(based for instance on topographical information) or by using

the more general concepts offered by the so-called statistical

dynamical theory (Kato, 1980; Becker & Al Haddad, 1990,

1992; Guigay, 1989). This extension seems to be vital, e.g. in

accurate charge-density studies, if the current method is to be

used to give estimates of relevant parameters that determine

the amount of extinction in a mosaic crystal.

APPENDIX A
Definitions

The geometrical parameters �� and ��for AB±CD scattering

are de®ned by8

�� �
sin �oh

sin�
 � �oh�
�14�

�� �
cos �oh

cos�
 � �oh�
: �15�

The boundary-value Green functions for the actual combi-

nations of positions for source and exit points are

GAÿC
h �ujx; y� � J0�2fu�2�� ÿ ���=�ÿ�x�xg1=2� �16�

GAÿD
h �ujx; y� � J0�2fu�2���ÿyÿ ���=�ÿ�x�xg1=2� �17�

GBÿC
h �ujx; y� � J0�2fu�2�ÿ��yÿ ���=�ÿ�x�xg1=2� �18�

GBÿD
h �ujx; y� � J0�2fu�2��� ÿ ���=�ÿ�x�xg1=2�: �19�
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Figure 11
Theoretical results for the generalized extinction factor for the 400
re¯ection in Dÿ Sq for the �-polarization component (C � 1) based
upon the Becker±Coppens theory. (a) Product of primary-extinction
factor, ordinary absorption factor and polarization factor. (b) Product of
secondary-extinction factor, ordinary absorption factor and polarization
factor. Actual measurements are included together with the best ®t (line).

7 Only a single state of polarization, C � 1, is considered here.

8 For the allowed ranges of �oh and 
, the parameters are always positive.
Notice the change from the de®nition given for AB±AD scattering [equations
(9) and (10) of TL99a].
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The factors related to absorption are

AAÿC
h ��0jx; y� � exp�ÿ��0=2�f2�� � �1ÿ ���=�ÿ��xg� �20�

AAÿD
h ��0jx; y� � exp�ÿ��0=2�f2���ÿy� �1ÿ ���=�ÿ��xg�

�21�
ABÿC

h ��0jx; y� � exp�ÿ��0=2�f2�ÿ��y� �1ÿ ���=�ÿ��xg�
�22�

ABÿD
h ��0jx; y� � exp�ÿ��0=2�f2��� � �1ÿ ���=�ÿ��xg�: �23�

The phase factors associated with each scattering process

become, cf. equations (11)±(14) of TL99b,

QAÿC
h ��0;��oh;��

0
ohjx; y�

� exp�ÿ�i�0��ohx� exp
ÿ
�i�0���0

oh=2�
� f2�� � �1ÿ ���=�ÿ��xg

� �24�
QAÿD

h ��0;��oh;��
0
ohjx; y�

� exp�ÿ�i�0��ohx� exp
ÿ
�i�0���0

oh=2�
� f2���ÿy� �1ÿ ���=�ÿ��xg

� �25�
QBÿC

h ��0;��oh;��
0
ohjx; y�

� exp�ÿ�i�0��ohx� exp
ÿ
�i�0���0

oh=2�
� f2�ÿ��y� �1ÿ ���=�ÿ��xg

� �26�
QBÿD

h ��0;��oh;��
0
ohjx; y�

� exp�ÿ�i�0��ohx� exp
ÿ
�i�0���0

oh=2�
� f2��� � �1ÿ ���=�ÿ��xg

�
: �27�

The de®nitions of the basic parameters of the theory are

summarized below, cf. Appendix A of TL99b:

� � �t=l� tan �oh �28�
u � �re�C=Vc�2FhF �h�l=2 sin �oh�2 �29�
�0 � ��l=2 sin �oh� �30�
�0 � �2l=�� cos �oh �31�

��0
oh � ÿ�re�

2=�Vc�<F0= sin 2�oh: �32�

APPENDIX B
Integration set-up

The integration set-up for the calculation of the generalized

extinction factor for AB±CD scattering is summarized in

Tables 8±10. As was the case for AB±AD scattering, the

integration limits depend upon the value of the parameter �.
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